Delhi Public School, Faridabad

Test Series-2

Mathematics, Class-12

Maximum Marks: 40

Duration: 90 minutes

Date: 13.10.2021

General Instructions:

- (i) This question paper contains three Sections-A,B and C. Each part is compulsory.
- (ii) Section-A has 20 MCQs, attempt any 16 out of 20.
- iii) Section-B has 20 MCQs, attempt any 16 out of 20.
- (iv) Section-C has 10 MCQs, attempt any 8 out of 10.
- (v) There is no negative marking.
- vi) All questions carry equal marks.

SECTION-A

this section, attempt any 16 questions out of Question No.1-20. Each question is of 1 mark weightage.

- 1. Let $A = \{1, 2, 3, ..., n\}$ and $B = \{a, b, c\}$. Then the number of functions from A to B is D. 3^{n-1} C. 3ⁿ B. ${}^{n}C_{3}$ A. ⁿP₃ [∞]
- 2. If A and B are two equivalence relations defined on set C, then
 - A. $A \cap B$ is an equivalence relation B. $A \cup B$ is not an equivalence relation C. $A \cup B$ is an equivalence relation
 - D. $A \cap B$ is not an equivalence relation
 - 3. The principal value of $\tan^{-1} \left(\tan \frac{3\pi}{5} \right)$ is

A.
$$\frac{2\pi}{5}$$

B.
$$-\frac{2\pi}{5}$$

C.
$$\frac{3\pi}{5}$$

4. The range of the principal value branch of the function $y = \sec^{-1} x$ is

B.
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

$$\mathcal{L}. [0,\pi] - \left\{\frac{\pi}{2}\right\}$$

5. If $\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} -4 & 6 \\ -9 & x \end{bmatrix}$, the value of x is

6. Given a skew-symmetric matrix $A = \begin{bmatrix} 0 & a & 1 \\ -1 & b & 1 \\ -1 & c & 0 \end{bmatrix}$, the value of $(a+b+c)^2$ is

$$\sqrt{A}$$
. 0

7. If matrix $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ and $A^2 = kA$, then the value of k is

$$\sqrt{B}$$
. 2

- B. If $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, then A^3 is equal to
 - A. A

B. 2A

A. A + B = B + A B. A	AB = AC does not imply $B = C$	C $AB = O$ implies $A \neq O$ or	$a B \neq O D. (AB)' = B'A'$
10 If A is a square matrix of	order 3, such that $A(adjA)$	= $10I$, then $ adjA $ is equal to	
A. 1	В. 10	C. 100	D. 101
	of order 3×3 such that $ A =$	= -4, then the value of $ A.adjA $	is
\(\frac{A}{A}\). 16	B. 64	C. −16	D64
12. The function	$f(x) = \begin{cases} \frac{\sin x}{x} \\ k, \end{cases}$	$\frac{x}{x} + \cos x, x \neq 0$ $x = 0$	
is continuous at $x = 0$, th			n i n
A. 3	.∕B. 2	C. 1	D. 1.5
13. If $cos(xy) = k$, where k is	a constant and $xy \neq n\pi$, $n \in$	Z, then $\frac{dy}{dx}$ is equal to	**************
A. $\frac{x}{y}$	B. $-\frac{x}{y}$	$C. \frac{y}{x}$	D. $-\frac{y}{x}$
14. If $y = x + \sqrt{x^2 - 1}$, then (y			
Ay	В. у	C. $\frac{1}{y}$	D. y^2
15. If tangent to the curve y^2	+3x-7=0 at the point (h, k	(c) is parallel to line $x - y = 4$, the	en value of k is
A3	$\sqrt{\mathrm{B.}} - \frac{3}{2}$	C. $\frac{3}{2}$	$\stackrel{\sim}{\mathrm{D}}$. $\frac{2}{3}$
16. The normal to the curve <i>x</i>	$c^2 = 4y$ passing (1,2) is		· (***,****
A. $x + y = 3$	B. $x - y = 3$	C. $x + y = 1$	D. $x - y = 1$
17. The stationary point of fur	nction $f(x) = x^x, x > 0$ is	A STATE OF THE STA	
A. $x = e^{-x}$	B. $x = -1$	C. $x = 1$	D. None of these
18. The function $f(x) = 4\sin^3$	$x - 6\sin^2 x + 12\sin x + 100$ is	strictly	saya a libi a no ma
		C. decreasing in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	D. decreasing in $\left(0, \frac{\pi}{2}\right)$
19. If $2^x + 2^y = 2^{x+y}$, then $\frac{dy}{dx}$	is equal to	Artidonal	
A. $\frac{2^x + 2^y}{2^x - 2^y}$	B. $2^{x-y} \left(\frac{2^y - 1}{1 - 2^x} \right)$	1+2"	$D. \frac{2^{x+y}-2^x}{2^y}$
and (0,5). Let $Z = 4x + 6y$	be the objective function.	e system of linear constraints a he minimum value of Z occurs	at.
A. (6,8) only B. (3,0) onl	y C. (0,2) only D. any poi	nt of the line segment joining the	ne points (0,2) and (3,0)

9. Assuming that the sums and products given below are defined, which of the following is not true for matrices?

SECTION-B

In this section, attempt any 16 questions out of Question No.21-40. Each question is of 1 mark weightage.

21. Let $f:[2,\infty)\to R$ be the function defined by $f(x)=x^2-4x+5$. Find the range of f is

A. R

B. $[1,\infty)$

C. $[4,\infty)$

D. $(5,\infty)$

22. A relation R in $S = \{1,2,3\}$ is defined as $R = \{(1,1),(2,2),(3,3),(1,2)\}$. Which element(s) of relation R be removed to make R an equivalence relation?

A. (1,1)

B. (2,2)

C. (3,3)

D. (1,2)

23. If a relation R on the set $\{4, 2, 7\}$ be defined by $R = \{2, 7\}$, then R is

A. reflexive

B. transitive

C. symmetric

D. none of these

24. Domain of $\sin x + \sin^{-1} x$ is

A. (-1,1)

B. [0, 1]

C. [-1,1]

D. R

25. $\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$, then x is equal to

D. $\frac{1}{2}$

26. The value of the expression $\tan \left| \frac{1}{2} \cos^{-1} \frac{2}{\sqrt{5}} \right|$ is

A. $2 + \sqrt{5}$

B. $\sqrt{5} - 2$

C. $\frac{\sqrt{5}+2}{2}$

D. $5 + \sqrt{5}$

27. If $A + B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $A - 2B = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$, then A is

A. $\frac{1}{4}\begin{bmatrix}1 & 1\\2 & 1\end{bmatrix}$

B. $\frac{1}{3}\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$

C. $\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$

28. If matrix $A = \begin{bmatrix} 0 & 2b & -2 \\ 3 & 1 & 3 \\ 3a & 3 & -1 \end{bmatrix}$ is a symmetric matrix, then the value of a is

29. For any matrix A, AA^T is a

A. Unit matrix

B. Symmetric matrix

C. Skew-symmetric matrix

D. Diagonal matrix

30. If $adjA = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$, then inverse of the matrix A is

 \sqrt{A} . $\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$

B. $\begin{bmatrix} -2 & 5 \\ 1 & -3 \end{bmatrix}$ C. $\begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix}$ eval. D. $\begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix}$

31. If $A = [a_{ij}]$ is a matrix of order 2×2 , such that |A| = -15 and C_{ij} represents the cofactor of a_{ij} , then the value of $a_{21}C_{21} + a_{22}C_{22}$ is

A. 18

B. 15

C. 10

√D. -15

0.0	The number of resisted	f discontinuity of f define	ed by $f(x) = x - x+1 $ is	, _ ,						
32.	A. 2	B. 0	C. 3	D. 4						
		and wie equal to								
	Differentiation of log _x 4	w.r.r. x is equal es	c log4	D. None of these						
	A. $\frac{\log 4}{x(\log x)^2}$	$B\frac{\log 4}{x(\log x)}$	$C\frac{\log 4}{x(\log x)^2}$							
34.	The slope of the tangent	to the curve $x = t^2 + 3t - 3t$	$48, y = 2t^2 - 2t - 5$ at the point $(2, -1)$	is 6						
	\tilde{A} . $\frac{22}{7}$	$\sqrt{\mathrm{B.}} \frac{6}{7}$	C. $\frac{7}{6}$	D. $-\frac{6}{7}$						
	35. The least value of the function $f(x) = ax + \frac{b}{x}(a > 0, b > 0, x > 0)$ is									
	A. \sqrt{ab}	B. $2\sqrt{ab}$	C. $\sqrt{a+b}$. D. none of these						
36.	Let the function $f: R \to R$	R be defined by $f(x) = 2$.	$x + \cos x$, then f	ur"						
	A. has a minimum at $x =$	π B. has a maximum at	x = 0C. is a decreasing function D. is	s an increasing function						
			e $y = -x^3 + 3x^2 + 12x - 5$ is	•						
	A. 15	B. 12	C. 9	D. 0						
38.	Maximum and minimum	$oldsymbol{n}$ value of the function f	$(x) = 3 - 2\sin x$ is respectively							
	A. 3 and 1	B. 4 and 3	C. 5 and 1	D. 4 and 2						
39.	The corner points of the Let $Z = 3x - 5y$ be the obj	feasible region determinective function. The diff	ned by the system of linear constrair erence between maximum and minir	nts are $(2,4)$, $(6,7)$, $(0,8)$. num value of Z is equal						
	to		0.17	D 40						
•	A. 26		C. 17	D. 40						
40.	If $y^2 = ax^2 + bx + c$. Then	$y^3 \frac{d^2 y}{dx^2}$ is								
	A. constant	B. function of x	. function of y	D. None of these						
		. S	ECTION-C							
In this section, attempt any 8 questions. Each question is of 1 mark weightage. Questions 46-50 are based on a Case-Study.										
	_	the line $y = mx + 1$ a tang	gent to the curve $y^2 = 4x$?							
,	A. $\frac{1}{2}$	B. 1	C. 2	D. 3						
		1.								
42.	The maximum value of [2	$x(x-1)+1] \overline{3}, 0 \le x \le 1 $ is	s:							
	A. 0	$\mathcal{B}. \frac{1}{2}$	C. 1	D. $\sqrt[3]{\frac{1}{3}}$						
43.	The point which does no	t lie in the half -plane 23								
	A. (1,2)	B. (2,1)	Vc. (2,3)	D. (-3,2)						

44.	In a linear programming part $x \le 3$. The region						
	A. is not in the first quadr	ant B. is bound	led in the first	quadrant C. is bo	ounded in the	first quadrant D.	does
	not exist			r_3 0 01	[1, 0	0]	
45.	If A is a square matrix of o	order 3 such th	at $A(adjA) =$	$\begin{bmatrix} 0 & -3 & 0 \\ 0 & 0 & -3 \end{bmatrix},$	$B = \begin{bmatrix} 7 & -1 \\ 5 & 2 \end{bmatrix}$	0, then the val	ue of
	-2AB is						204
	A. 12	B1296		C. 48	} ~ .	D	-324
	Cases-Studies						
	A cable network provider in subscriber. He proposes to increase in ₹1= one subscri	increase the mail increase the mail increase the mail discor	onthly charge atinue the serv	s and it is believed ice.	to collect ₹300 I from past ex	per month from perience that for	each every
	Based on the above inform	nation, answer	the following	questions:			
46.	If \mathbf{x} is the monthly increase A. \mathbf{x}	se in subscription $\frac{1}{100}$	on amount, th	en the number of $C. x-500$	subscriber are	D. none of t	hese
47	Total revenue 'R' is given b	v (in ₹)	1				
41.	Total revenue 'R' is given of A. $R = 300x + 300(500 - x)$	B. $R = (300)$	+x)(500 + x)	C. R = (300 + x)(500 - x) D.	R = 300x + 500(x)	:+1)
1Ω	$\frac{d^2R}{dx^2}$ is						
10.	dx^2 A. 2	√B2		C. 100		D. <i>a</i> =	-100
19.	What is increase in charges	per subscribe	r that yields m	aximum revenue?	1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2		
		B. <i>x</i> =₹20		C. <i>x</i> =₹3		D. <i>x</i> =	₹400
50.	How would you conclude t	hat the revenu	e generated is	maximum?			
	A. By actually calculating double derivative test which	evenue B. By	using double d	erivative test whic	h gives positi	ve value 🗸. By u D. None of ab	sing ove