VIDYA MANDIR PUBLIC SCHOOL, SECTOR 15/A, FARIDABAD

		E BOADD EVAMINATION	13/7, 170			
CLASS XII [2021-22]	SUBIECT – N		SET 0/11/A			
<u>General Instructions</u> : i) Th ii) Se iii) S iv) S v) Th vi) A	e question paper ection - A has 20 r ection - B has 20 ection - C has 10 here is no negativ Il questions carry	ontains three sections – A, E MCQ's, attempt any 16 out of MCQ's, attempt any 16 out of MCQ's, attempt any 8 out of 2 me marking. requal marks.	321 041/A 3 and C. Each par 20. f 20. 10.	t is compulsory.		
(1)	n this section atta	SECTION A	Questions 1-20)			
1. The value of $\tan\left[\frac{1}{2}\right]$	$\cos^{-1}\left(-\frac{1}{2}\right)$ is	empt any to questions out of				
a. 1	b. √3	c. 0	d. none o	of these		
2. If $f(x) = \begin{cases} 3x-8\\ 2k\\ x+2 \end{cases}$	if x<5 if x=5 is contin if x>5	nuous at x=5, then the value o	of k is :			
a. 7	b. 10	c5	d. 7/2			
3. If $A = \begin{bmatrix} 0 & 0 \\ 2 & 2 \end{bmatrix}$ then	A ²⁰ is					
$a. \begin{bmatrix} 0 & 0 \\ 2^{20} & 2^{20} \end{bmatrix}$	b. $\begin{bmatrix} 0 & 0 \\ 2 & 2 \end{bmatrix}$	$\mathbf{c} \cdot \begin{bmatrix} 0 & 0 \\ 40 & 40 \end{bmatrix}$	d.	0 40		
4. If $A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ and	$d B = \begin{bmatrix} -5 & 4 \\ 0 & 2 \\ 1 & -3 \end{bmatrix}$	0 -1 2] then AB =				
a. $\begin{bmatrix} -5 & 4 & 0 \\ 0 & 4 & -2 \\ 3 & -9 & 6 \end{bmatrix}$	$\mathbf{b}.\begin{bmatrix}3\\1\\1\end{bmatrix}$	c. [-2 -1 4	4] d. $\begin{bmatrix} -5 & 8 \\ 0 & 4 \\ 1 & - \end{bmatrix}$	8 0 1 -3 6 6		
5. The interval on whi	ch the function <i>f</i>	$f(x) = 2x^3 + 9x^2 + 12x - 1$ is do	ecreasing is			
a. [−1,∞)	b. (-2,-1)	c. (−∞,−2]	d. [-1,1]			
6. For any 2x2 matrix, if $A(adjA) = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$, then $ A $ is equal to						

a. 20
b. 100
c. 10
d. 0

7. If A = {a, b, c, d, e} and B = { 1, 2, 3, 4 } then the number of relations that can be defined from A to B is

a. 20 b. 2²⁰ c. 2⁹ d. 9

8. If
$$A = \begin{bmatrix} -1 & 4 \\ 1 & 3 \end{bmatrix}$$
 and $B' = \begin{bmatrix} 0 & 3 \\ 1 & 2 \end{bmatrix}$ then $7A + 5B =$
a. $\begin{bmatrix} -7 & 22 \\ 33 & 21 \end{bmatrix}$
b. $\begin{bmatrix} 7 & -22 \\ 33 & 31 \end{bmatrix}$
c. $\begin{bmatrix} -7 & 33 \\ 22 & 31 \end{bmatrix}$
d. $\begin{bmatrix} 22 & 21 \\ -7 & 31 \end{bmatrix}$
9. The point on the curve $v^2 = x$ where the tangent makes an angle 45° with the x-axis.

a. $\left(\frac{1}{2}, \frac{1}{4}\right)$ b. $\left(\frac{1}{4}, \frac{1}{2}\right)$ c. (4, 2) d. (1, 1)10. The value of $\tan\left[\frac{1}{2}\cos^{-1}\left(\frac{3}{5}\right)\right] + \tan\left[\frac{1}{2}\cos^{-1}\left(\frac{4}{5}\right)\right]$ is a. $\frac{5}{6}$ b. $-\frac{5}{6}$ c. $\frac{1}{2}$ d. 0

11. Let T be the set of all triangles and let a relation R on T is defined as aRb, if a is congruent to b,

 $\forall a, b \in T$. Then

a. R is reflexive but not transitive.

b. R is transitive but not symmetric.

- c. R is an equivalence relation. 12. If $y = \log\left(\frac{1-x^2}{1+x^2}\right)$, then $\frac{dy}{dx} =$ a. $\frac{4x^3}{1-x^4}$ b. $\frac{-4x}{1-x^4}$ c. $\frac{1}{4-x^4}$ d. $\frac{-4x^3}{1-x^4}$
- 13. If A & B are square matrices of same order then
- a. A + B = B + Ab. A + B = B - A c. A - B = B - A d. AB = BA 14. If $x = t^2$, $y = t^3$ then $\frac{d^2y}{dx^2}$ is d. $\frac{3}{2t}$ a. $\frac{3}{2}$ c. $\frac{4}{3t}$ b. $\frac{3}{4+}$ 15. If $A = \begin{bmatrix} 5 & x \\ y & 0 \end{bmatrix}$ and A = A', then a. x = 0, y = 5d. None of these b.x = yc. x + y = 516. At (0,0) the curve $y = x^{\frac{1}{5}}$ has b. tangent parallel to X-axis a. tangent parallel to Y-axis c. an oblique tangent d. No tangent 17. Write the element a_{12} of the matrix $A = \left[a_{ij}\right]_{2\times 2}$ whose elements a_{ij} are given by $a_{ij} = e^{2ix} \sin jx$ e^{12x} sin12x b. $e^{2x} \sin 2x$ c. $e^{2x} \sin 4x$ d.None of these

18. Derivative of
$$\sin^{-1}\left(\frac{2x}{1+x^2}\right)$$
 w.r.t $\tan^{-1}x \quad (-1 < x < 1)$ is
a. -2 b. 2 c. 0 d. 1

19. In an L.P.P, if the objective function Z = ax + by has the same maximum value on two corner points of the feasible region, then the number of points of which Z_{max} is

a. 0
b. 2
c. finite
d. infinite
20. The maximum value of
$$\left[x(x-1)+1\right]^{\frac{1}{3}}$$
, $0 \le x \le 1$ is a
a. $\left(\frac{1}{3}\right)^{\frac{1}{3}}$
b. $\frac{1}{2}$
c. 1
d. 0

SECTION B

(In this section, attempt any 16 questions out of Questions 21-40)

21. f : R -> R is a function defined by $f(x) = \frac{1}{x} \forall x \in R$ then f is

a. one one b. onto c. bijective d. not defined 22. If $x = at^2$, y = 2at then $\frac{d^2y}{dx^2}$ is

- a. $-\frac{1}{2at^3}$ b. $\frac{1}{2at^2}$ c. $-\frac{1}{2at^2}$ d. 0
- 23. The feasible region for an L.P.P. is shown below.. Let Z = 3x 4y be the objective function. Minimum of Z occurs at

a. (0, 0)

b. (0, 8)

d. (4, 10)

24. If
$$u = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$$
 and $v = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$ then $\frac{du}{dv}$ is
a. $\frac{1}{2}$ b. x c. $\frac{1-x^2}{1+x^2}$ d. 1
25. The inverse of matrix $\begin{bmatrix} 3 & -2\\ -7 & 5 \end{bmatrix}$ is
a. $\begin{bmatrix} 5 & 2\\ 7 & 3 \end{bmatrix}$ b. $\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$ c. $\begin{bmatrix} 2 & 7\\ 5 & 8 \end{bmatrix}$ d. $\begin{bmatrix} 1 & 3\\ 0 & 10 \end{bmatrix}$

26. The point at which the normal to the curve $y = 2x^2 - 2x + 7$ has a slope $\frac{1}{6}$ is

- b. (1, -11) c. (-1, 11) a. (-1, -11) d. (-1, -9)
- 27. The principal value branch of $\cos ec^{-1}x$ is

a.
$$\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$$
 b. $(0, \pi) - \left\{\frac{\pi}{2}\right\}$ c. $\left\{\frac{-\pi}{2}, \frac{\pi}{2}\right\}$ d. $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] - \{0\}$
28. If $f(x) = x^2 + 4x - 5$ and $A = \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix}$, then f(A) is equal to
a. $\begin{bmatrix} 0 & -4 \\ 8 & 8 \end{bmatrix}$ b. $\begin{bmatrix} 2 & 1 \\ 2 & 0 \end{bmatrix}$ c. $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ d. $\begin{bmatrix} 8 & 4 \\ 8 & 0 \end{bmatrix}$

29. The values of a for which the function $f(x) = \sin x - ax + b$ increases on R are

a.
$$(-\infty,\infty)$$
 b. $[-1,1]$ c. $(-\infty,-1)$ d. none of these

30. Let R be the relation defined on the set N of natural numbers by the rule xRy iff x+2y = 8. Then the domain of R is

b. {2, 4, 6} c. {2, 4, 6, 8} a.{2, 4, 8} d. {1, 2, 3, 4}

31. If is $f(x) = \begin{cases} mx+1, & x \le \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2} \end{cases}$ continuous at $x = \frac{\pi}{2}$ then c. $n = \frac{m\pi}{2}$ d. $m = n = \frac{\pi}{2}$ a. m = 1, n = 2 b. $m = \frac{n\pi}{2} + 1$

32. If P and Q are symmetric matrices of same order then PQ-QP is a

a. Zero matrix	b. Identity matrix
c. Skew symmetric matrix	d. Symmetric matrix
33. The smallest value of $x^3 - 18x^2 + 9x \ln[0,9]$ is	

a. 126 b. 0 c. 135 d. 160 34. Solution of L.P.P Max Z = x+y subject to $x \le 2, y \le 2, x, y \ge 0$ is

a.4	b. 2	c. 1	d. none of these		
35. If $A = \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$	s such that $A^2 = I$				
a. 1+ α^2 + β	$\beta \gamma = 0$	b. $1 - \alpha^2 + \beta \gamma = 0$			
c. $1-\alpha^2-\beta_2^2$	$\gamma = 0$	d. $1+\alpha^2-\beta\gamma=0$			
36. 2sec ⁻¹ 2+sin	$-1\left(\frac{1}{2}\right)$ is equal to				
a. $\frac{\pi}{6}$	b. $\frac{5\pi}{6}$	c. $\frac{7\pi}{6}$	d. 1		
37. If $f: R \to R$ is	a function defined by $f(x)$	$=4^{x}+4^{ x }$ then f is			
a. one one not onto		b. one one and onto	b. one one and onto		
c. many one and not onto		d. many one and onto			
38. The number o	of all possible matrices of o	rder 3x3 with each entry 0 or	1 is		
a. 27	b. 18	c. 81	d. 512		
39. The line y = x	+ 1is tangent to the curve y	γ^2 = 4x at the point			
a. (1, 2)	b. (2, 1)	c. (1, -2)	d. (-1, 2)		
40. If X, Y, Z, W, F	Pare matrices of order 2xn,	3xk, 2xp, nx3 and pxk respec	tively, then the restriction on		
n, k and p so	that PY + WY will be define	d are			
a. k = 3, p = r	ı	b. k is arbitrary, p = 2			
c. p is arbitra	ry, k = 3	d. k = 2, p = 3			
		SECTION C			
In this section atten on Case- study.	npt any 8 questions. Each q	uestion is of 1 mark weightag	e. Questions 46-50 are based		

41. The corners points of the feasible region determined by the system of linear constraints are

(0,10), (5,5), (15,15),(0,20). Let Z = px + qy, where p,q > 0 . Condition on p and q so that the maximum of Z occurs at both the points (15,15) and (0,20) is

a. p = qb. p = 2qc. q = 2pd. q = 3p42. The angle of intersection of two curves $x^2y = 2$ and $xy^2 = 4$ isa. $\tan^{-1}\frac{3}{5}$ b. $\tan^{-1}3$ c. $\tan^{-1}\frac{5}{3}$ d. None of these43. The maximum value of slope of curve $y = -x^3 + 3x^2 + 12x - 5$ isa. 15b. 12c. 9d. 0

44. A point out of the following points lie in plane represented by
$$2x + 3y \le 12$$
 is
a. $(0, 3)$ b. $(3, 3)$ c. $(4, 3)$ d. $(0, 5)$
45. If $\theta = \frac{\pi}{6}$, then $\begin{vmatrix} 0 & -1 & 1 \\ \cos \theta & \sin \theta & 0 \\ \sin \theta & 0 & \cos \theta \end{vmatrix}$ is equal to
a. 0 b. $\frac{1}{2}$ c. $\frac{\sqrt{3}}{2}$ d. None of these
CASE STUDY QUESTION

On the request of villagers, a construction agency designs a tank with the help of an architect. Tank consists of rectangular base with rectangular sides, open at the top so that its depth is 2m and volume is 8m³ as shown below:

Based on the above information answer the following questions

46. If x and y are the length and breadth of its rectangular base, then the relation between the variables is

a.
$$x + y = 8$$
 b. $x \cdot y = 4$ c. $x + y = 4$ d. $\frac{x}{y} = 4$

47. If construction of tank cost Rs. 70 per sq. metre for the base, and Rs. 45 per sq. metre for the sides, then the making cost C expressed as a function of x is

a.
$$C = 80 + 80\left(x + \frac{4}{x}\right)$$

b. $C = 280x + 280\left(x + \frac{4}{x}\right)$
c. $C = 280 + 180\left(x + \frac{4}{x}\right)$
d. $C = 70x + 70\left(x + \frac{4}{x}\right)$

48. The owner of the construction agency is interested in minimizing the cost C of whole tank, for this to happen the value of x should be a. 4 m

49. For minimum cost C the value of y should be

a. 1 m	b. 3 m	c. 2 m	d. 4 m
50. The Pradhan of villa	ge wants to know minimur	n cost. The minimum cost	is
a. Rs. 2000	b. Rs. 4000	c. Rs. 11000	d. Rs. 1000