VIDYA MANDIR PUBLIC SCHOOL, SECTOR 15/A, FARIDABAD

CLASS XII [2021-22]
TIME: 90 MIN.
PRE BOARD EXAMINATION
ROLL NO.......

General Instructions: i) The question paper contains three sections - A, B and C. Each part is compulsory.
ii) Section - A has 20 MCQ's, attempt any 16 out of 20.
iii) Section - B has $\mathbf{2 0}$ MCQ's, attempt any 16 out of 20.
iv) Section - C has 10 MCQ's, attempt any 8 out of 10.
v) There is no negative marking.
vi) All questions carry equal marks.

SECTION A

(In this section, attempt any 16 questions out of Questions 1-20)

1. The value of $\tan \left[\frac{1}{2} \cos ^{-1}\left(-\frac{1}{2}\right)\right]$ is
a. 1
b. $\sqrt{3}$
c. 0
d. none of these
2. If $f(x)=\left\{\begin{array}{cl}3 x-8 & \text { if } x<5 \\ 2 k & \text { if } x=5 \text { is continuous at } x=5, \text { then the value of } k \text { is : } \\ x+2 & \text { if } x>5\end{array}\right.$
a. 7
b. 10
c. -5
d. $7 / 2$
3. If $A=\left[\begin{array}{ll}0 & 0 \\ 2 & 2\end{array}\right]$ then A^{20} is
a. $\left[\begin{array}{cc}0 & 0 \\ 2^{20} & 2^{20}\end{array}\right]$
b. $\left[\begin{array}{ll}0 & 0 \\ 2 & 2\end{array}\right]$
c. $\left[\begin{array}{cc}0 & 0 \\ 40 & 40\end{array}\right]$
d. $\left[\begin{array}{cc}40 & 0 \\ 0 & 40\end{array}\right]$
4. If $A=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$ and $B=\left[\begin{array}{ccc}-5 & 4 & 0 \\ 0 & 2 & -1 \\ 1 & -3 & 2\end{array}\right]$ then $A B=$
a. $\left[\begin{array}{ccc}-5 & 4 & 0 \\ 0 & 4 & -2 \\ 3 & -9 & 6\end{array}\right]$
b. $\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right]$
d. $\left[\begin{array}{ccc}-5 & 8 & 0 \\ 0 & 4 & -3 \\ 1 & -6 & 6\end{array}\right]$
5. The interval on which the function $f(x)=2 x^{3}+9 x^{2}+12 x-1$ is decreasing is
a. $[-1, \infty)$
b. $(-2,-1)$
c. $(-\infty,-2]$
d. $[-1,1]$
6. For any 2×2 matrix, if $A(\operatorname{adj} A)=\left[\begin{array}{cc}10 & 0 \\ 0 & 10\end{array}\right]$, then $|A|$ is equal to
a. 20
b. 100
c. 10
d. 0
7. If $A=\{a, b, c, d, e\}$ and $B=\{1,2,3,4\}$ then the number of relations that can be defined from A to B is
a. 20
b. 2^{20}
c. 2^{9}
d. 9
8. If $A=\left[\begin{array}{cc}-1 & 4 \\ 1 & 3\end{array}\right]$ and $B^{\prime}=\left[\begin{array}{ll}0 & 3 \\ 1 & 2\end{array}\right]$ then $7 A+5 B=$
a. $\left[\begin{array}{ll}-7 & 22 \\ 33 & 21\end{array}\right]$
b. $\left[\begin{array}{cc}7 & -22 \\ 33 & 31\end{array}\right]$
c. $\left[\begin{array}{ll}-7 & 33 \\ 22 & 31\end{array}\right]$
d. $\left[\begin{array}{ll}22 & 21 \\ -7 & 31\end{array}\right]$
9. The point on the curve $y^{2}=x$ where the tangent makes an angle 45° with the x-axis.
a. $\left(\frac{1}{2}, \frac{1}{4}\right)$
b. $\left(\frac{1}{4}, \frac{1}{2}\right)$
c. $(4,2)$
d. $(1,1)$
10. The value of $\tan \left[\frac{1}{2} \cos ^{-1}\left(\frac{3}{5}\right)\right]+\tan \left[\frac{1}{2} \cos ^{-1}\left(\frac{4}{5}\right)\right]$ is
a. $\frac{5}{6}$
b. $-\frac{5}{6}$
c. $\frac{1}{2}$
d. 0
11. Let T be the set of all triangles and let a relation R on T is defined as $a R b$, if a is congruent to b, $\forall a, b \in T$. Then
a. R is reflexive but not transitive.
b. \mathbf{R} is transitive but not symmetric.
c. R is an equivalence relation.
d. none of these
12. If $y=\log \left(\frac{1-x^{2}}{1+x^{2}}\right)$, then $\frac{d y}{d x}=$
a. $\frac{4 x^{3}}{1-x^{4}}$
b. $\frac{-4 x}{1-x^{4}}$
c. $\frac{1}{4-x^{4}}$
d. $\frac{-4 x^{3}}{1-x^{4}}$
13. If $A \& B$ are square matrices of same order then
a. $A+B=B+A$
b. $A+B=B-A$
c. $\mathrm{A}-\mathrm{B}=\mathrm{B}-\mathrm{A}$
d. $A B=B A$
14. If $x=t^{2}, y=t^{3}$ then $\frac{d^{2} y}{d x^{2}}$ is
a. $\frac{3}{2}$
b. $\frac{3}{4 t}$
c. $\frac{4}{3 t}$
d. $\frac{3}{2 t}$
15. If $A=\left[\begin{array}{ll}5 & x \\ y & 0\end{array}\right]$ and $A=A^{\prime}$, then
a. $x=0, y=5$
b. $x=y$
c. $x+y=5$
d. None of these
16. At $(0,0)$ the curve $y=x^{\frac{1}{5}}$ has
a. tangent parallel to Y -axis
b. tangent parallel to X -axis
c. an oblique tangent
d. No tangent
17. Write the element a_{12} of the matrix $A=\left[a_{i j}\right]_{2 \times 2}$ whose elements $a_{i j}$ are given by $a_{i j}=e^{2 i x} \sin j x$
$e^{12 x} \sin 12 x$
b. $e^{2 x} \sin 2 x$
c. $e^{2 x} \sin 4 x$
d.None of these
18. Derivative of $\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$ w.r.t $\tan ^{-1} x \quad(-1<x<1)$ is
a. -2
b. 2
c. 0
d. 1
19. In an L.P.P, if the objective function $Z=a x+b y$ has the same maximum value on two corner points of the feasible region, then the number of points of which $Z_{\text {max }}$ is
a. 0
b. 2
c. finite
d. infinite
20. The maximum value of $[x(x-1)+1]^{\frac{1}{3}}, 0 \leq x \leq 1$ is a
a. $\left(\frac{1}{3}\right)^{\frac{1}{3}}$
b. $\frac{1}{2}$
c. 1
d. 0

SECTION B

(In this section, attempt any 16 questions out of Questions 21-40)
21. $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ is a function defined by $f(x)=\frac{1}{x} \forall x \in R$ then f is
a. one one
b. onto
c. bijective
d. not defined
22. If $x=a t^{2}, y=2 a t$ then $\frac{d^{2} y}{d x^{2}}$ is
a. $-\frac{1}{2 a t^{3}}$
b. $\frac{1}{2 a t^{2}}$
c. $-\frac{1}{2 a t^{2}}$
d. 0
23. The feasible region for an L.P.P. is shown below.. Let $Z=3 x-4 y$ be the objective function. Minimum of Z occurs at

a. $(0,0)$
b. $(0,8)$
c. $(5,0)$
d. $(4,10)$
24. If $u=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$ and $v=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$ then $\frac{d u}{d v}$ is
a. $\frac{1}{2}$
b. x
c. $\frac{1-x^{2}}{1+x^{2}}$
d. 1
25. The inverse of matrix $\left[\begin{array}{cc}3 & -2 \\ -7 & 5\end{array}\right]$ is
a. $\left[\begin{array}{ll}5 & 2 \\ 7 & 3\end{array}\right]$
b. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
c. $\left[\begin{array}{ll}2 & 7 \\ 5 & 8\end{array}\right]$
d. $\left[\begin{array}{cc}1 & 3 \\ 0 & 10\end{array}\right]$
26. The point at which the normal to the curve $y=2 x^{2}-2 x+7$ has a slope $\frac{1}{6}$ is
a. (-1, -11)
b. $(1,-11)$
c. $(-1,11)$
d. (-1, -9)
27. The principal value branch of $\operatorname{cosec}^{-1} x$ is
a. $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
b. $(0, \pi)-\left\{\frac{\pi}{2}\right\}$
c. $\left\{\frac{-\pi}{2}, \frac{\pi}{2}\right\}$
d. $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]-\{0\}$
28. If $f(x)=x^{2}+4 x-5$ and $A=\left[\begin{array}{cc}1 & 2 \\ 4 & -3\end{array}\right]$, then $f(A)$ is equal to
a. $\left[\begin{array}{cc}0 & -4 \\ 8 & 8\end{array}\right]$
b. $\left[\begin{array}{ll}2 & 1 \\ 2 & 0\end{array}\right]$
c. $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
d. $\left[\begin{array}{ll}8 & 4 \\ 8 & 0\end{array}\right]$
29.The values of a for which the function $f(x)=\sin x-a x+b$ increases on R are
a. $(-\infty, \infty)$
b. $[-1,1]$
c. $(-\infty,-1)$
d. none of these
30. Let R be the relation defined on the set N of natural numbers by the rule $x R y$ iff $x+2 y=8$. Then the domain of R is
a. $\{2,4,8\}$
b. $\{2,4,6\}$
c. $\{2,4,6,8\}$
d. $\{1,2,3,4\}$
31. If is $f(x)=\left\{\begin{array}{ll}m x+1, & x \leq \frac{\pi}{2} \\ \sin x+n, & x>\frac{\pi}{2}\end{array}\right.$ continuous at $x=\frac{\pi}{2}$ then
a. $m=1, n=2$
b. $m=\frac{n \pi}{2}+1$
c. $n=\frac{m \pi}{2}$
d. $m=n=\frac{\pi}{2}$
32. If P and Q are symmetric matrices of same order then $P Q-Q P$ is a
a. Zero matrix
b. Identity matrix
c. Skew symmetric matrix
d. Symmetric matrix
33. The smallest value of $x^{3}-18 x^{2}+9 x$ in $[0,9]$ is
a. 126
b. 0
c. 135
d. 160
34. Solution of L.P.P Max $Z=x+y$ subject to $x \leq 2, y \leq 2, x, y \geq 0$ is
a. 4
b. 2
c. 1
d. none of these
35. If $A=\left[\begin{array}{cc}\alpha & \beta \\ \gamma & -\alpha\end{array}\right]$ is such that $A^{2}=1$
a. $1+\alpha^{2}+\beta \gamma=0$
b. $1-\alpha^{2}+\beta \gamma=0$
c. $1-\alpha^{2}-\beta \gamma=0$
d. $1+\alpha^{2}-\beta \gamma=0$
36. $2 \sec ^{-1} 2+\sin ^{-1}\left(\frac{1}{2}\right)$ is equal to
a. $\frac{\pi}{6}$
b. $\frac{5 \pi}{6}$
c. $\frac{7 \pi}{6}$
d. 1
37. If $f: R \rightarrow R$ is a function defined by $f(x)=4^{x}+4^{|x|}$ then f is
a. one one not onto
b. one one and onto
c. many one and not onto
d. many one and onto
38. The number of all possible matrices of order 3×3 with each entry 0 or $\mathbf{1}$ is
a. 27
b. 18
c. 81
d. 512
39. The line $y=x+1$ is tangent to the curve $y^{2}=4 x$ at the point
a. $(1,2)$
b. $(2,1)$
c. $(1,-2)$
d. (-1, 2)
40. If X, Y, Z, W, P are matrices of order $2 \times n, 3 \times k, 2 x p, n x 3$ and $p x k$ respectively, then the restriction on n, k and p so that $P Y+W Y$ will be defined are
a. $k=3, p=n$
b. k is arbitrary, $p=2$
c. p is arbitrary, $k=3$
d. $k=2, p=3$

SECTION C

In this section attempt any 8 questions. Each question is of 1 mark weightage. Questions 46-50 are based on Case- study.
41. The corners points of the feasible region determined by the system of linear constraints are $(0,10),(5,5),(15,15),(0,20)$. Let $Z=p x+q y$, where $p, q>0$. Condition on p and q so that the maximum of Z occurs at both the points $(15,15)$ and $(0,20)$ is
a. $p=q$
b. $p=2 q$
c. $q=2 p$
d. $q=3 p$
42. The angle of intersection of two curves $x^{2} y=2$ and $x y^{2}=4$ is
a. $\tan ^{-1} \frac{3}{5}$
b. $\tan ^{-1} 3$
c. $\tan ^{-1} \frac{5}{3}$
d. None of these
43. The maximum value of slope of curve $y=-x^{3}+3 x^{2}+12 x-5$ is
a. 15
b. 12
c. 9
d. 0
44. A point out of the following points lie in plane represented by $2 x+3 y \leq 12$ is
a. $(0,3)$
b. $(3,3)$
c. $(4,3)$
d. $(0,5)$
45. If $\theta=\frac{\pi}{6}$, then $\left|\begin{array}{ccc}0 & -1 & 1 \\ \cos \theta & \sin \theta & 0 \\ \sin \theta & 0 & \cos \theta\end{array}\right|$ is equal to
a. 0
b. $\frac{1}{2}$
c. $\frac{\sqrt{3}}{2}$
d. None of these

CASE STUDY QUESTION

On the request of villagers, a construction agency designs a tank with the help of an architect.
Tank consists of rectangular base with rectangular sides, open at the top so that its depth is $\mathbf{2 m}$ and volume is $\mathbf{8 m}{ }^{\mathbf{3}}$ as shown below:

Based on the above information answer the following questions
46. If x and y are the length and breadth of its rectangular base, then the relation between the variables is
a. $x+y=8$
b. $x . y=4$
c. $x+y=4$
d. $\frac{x}{y}=4$
47. If construction of tank cost Rs. 70 per sq. metre for the base, and Rs. 45 per sq. metre for the sides, then the making cost C expressed as a function of x is
a. $C=80+80\left(x+\frac{4}{x}\right)$
b. $C=280 x+280\left(x+\frac{4}{x}\right)$
c. $C=280+180\left(x+\frac{4}{x}\right)$
d. $C=70 x+70\left(x+\frac{4}{x}\right)$
48. The owner of the construction agency is interested in minimizing the cost C of whole tank, for this to happen the value of x should be
a. 4 m
b. 3 m
c. 1 m
d. 2 m
49. For minimum cost C the value of y should be
a. 1 m
b. 3 m
c. 2 m
d. 4 m
50. The Pradhan of village wants to know minimum cost. The minimum cost is
a. Rs. 2000
b. Rs. 4000
c. Rs. 11000
d. Rs. 1000

