'PEACE' HOMERTON GRAMMAR SCHOOL PERIODIC TEST II (2021-22) **CLASS: XII, SUBJECT: MATHEMATICS**

TIME: 1 Hr. 20 min	M.M :-50
NAME:	ROLL No
Question 1.The function $f : A \rightarrow B$ defined by $f(x) = 4x$ (a) one-one (b) Many-one (c) Odd (d) E	+ 7, x ∈ R is Even
Question 2.The smallest integer function f(x) = [x] (a) One-one (b) Many-one (c) Both (a) & (is b) (d) None of these
 Question 3. The function f : R → R defined by f(x) (a) Onto (b) Not onto (c) None one-one 	= 3 – 4x is (d) None of these
Question 4. The number of bijective functions from 106 elements is	n set A to itself when A contains
(a) 106 (b) (106) ² (c) 106! (d) 2 ¹⁰⁶	
Question 5.Let us define a relation R in R as a R (a) an equivalence relation (b) reflexive, transitive but not symmetric (c) symmetric, transitive but not reflexive (d) neither transitive nor reflexive but symmet	b if a ≥ b. Then R is ric

Question 6.Let A = $\{1, 2, 3\}$ and consider the relation R = $\{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (3, 3), (1, 2), (3, 3), (3, 3), (1, 2), (3, 3)$ (2, 3), (1, 3)}. Then R is (a) reflexive but not symmetric (b) reflexive but not transitive (c) symmetric and transitive (d) neither symmetric, nor transitive Question 7. If $\cos^{-1} x + \sin^{-1} x = \pi$, then the value of x is (d) 2/√3 (a) 3/2 (b) 1√2 (c) √3/2 Question 8.If $\sin^{-1} x - \cos^{-1} x = \pi/6$, then $x = \pi/6$ (d) −√3/2 (a) ½ (b) √3/2 (c) -1/2Question 9.If $\tan^{-1}(\cot \theta) = 2\theta$, then θ is equal to (a) π/3 (b) π/4 (C) π/6 (d) None of these Question 10. $Cot(\pi/4 - 2cot^{-1} 3) =$ (a) 7 (b) 6 (c) 5 (d) None of these Question 11. If $\tan^{-1} 3 + \tan^{-1} x = \tan^{-1} 8$, then x =(a) 5 (b) 1/5 (C) 5/14 (d) 14/5

Question 12.	
$\sin^{-1}\left(\frac{-1}{2}\right)$	
(a) $\frac{\pi}{3}$	(b) $-\frac{\pi}{3}$
$(c) \frac{\pi}{2}$	(d) $-\frac{\pi}{2}$
6	6
Question 13.	
$\cos^{-1}\left(\frac{1}{2}\right)$	
(a) $-\frac{\pi}{3}$	(b) $\frac{\pi}{3}$
(c) $\frac{\pi}{2}$	(d) $\frac{2\pi}{3}$
2	5
Question 14.	
$\tan^{-}(\sqrt{3})$	π
(a) $\frac{1}{6}$	(b) $\frac{1}{3}$
(c) $\frac{2\pi}{3}$	(d) $\frac{5\pi}{6}$
Question 15.	
$\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$	
(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{3}$
(c) $\frac{\pi}{2}$	(d) $\frac{\pi}{2}$
6	2
Question 16.	
$\tan^{-1} 1 + \cos^{-1} \left(\frac{-1}{2} \right)$	$\left(\frac{1}{2}\right) + \sin^{-1}\left(\frac{-1}{2}\right)$
(a) $\frac{2\pi}{3}$	(b) $\frac{3\pi}{4}$
(c) $\frac{\pi}{2}$	(d) 6π
Question 17.	
$\cos^{-1}\frac{1}{2} + 2\sin^{-1}$	$\frac{1}{2}$ is equal to
(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{6}$
(c) $\frac{\pi}{2}$	(d) $\frac{2\pi}{2}$
3	3

Question 18.

The	derivative of	$\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ with respect to
cot	$-1\left(\frac{1-3x^2}{3x-x^3}\right)$ is	
(a)	1	(b) $\frac{3}{2}$
(c)	$\frac{2}{3}$	(d) $\frac{1}{2}$

Question 19.

The derivative of

Question 20.

If $x = a \sin \theta$ and $y = b \cos \theta$, then $\frac{d^2 y}{dx^2}$ is equal to

(a)
$$\frac{a}{b^2} \sec^2 \theta$$
 (b) $\frac{b}{a} \sec^2 \theta$
(c) $\frac{b}{a^2} \sec^3 \theta$ (d) $-\frac{b}{a^2} \sec^3 \theta$

Question 21.

If
$$y = \tan^{-1} \left[\frac{\sin x + \cos x}{\cos x - \sin x} \right]$$
, then $\frac{dy}{dx}$ is equal to
(a) $\frac{1}{2}$ (b) $\frac{\pi}{4}$
(c) 0 (d) 1

Question 22.

If
$$y = e^{3x+7}$$
, then the value of $\frac{dy}{dx}\Big|_{x=0}$ is
(a) 1 (b) 0
(c) -1 (d) $3e^7$

Question 23.

If $f(x) = \frac{\sqrt{4+x}-2}{x}$, $x \neq 0$ be continuous at $x = 0$, then			
f(0)	=	~	
(a)	$\frac{1}{2}$	(b) $\frac{1}{4}$	
(c)	2	(d) $\frac{3}{2}$	

Question 24.

If
$$y = e^{x+e^{x+e^{x+\dots to \infty}}}$$
, find $\frac{dy}{dx} =$
(a) $\frac{y^2}{1-y}$ (b) $\frac{y^2}{y-1}$
(c) $\frac{y}{1-y}$ (d) $\frac{-y}{1-y}$

Answer questions 25-29 based on the following case study:

A man has an expensive square shape piece of golden board of size 24 cm is to be made into a box without top by cutting from each corner and folding the flaps to form

a box.				
	4-2x			
Question 25.Volume	e of open box formed	d by folding up tł م	ne flap: 34x2+ 244x)	
c. $x^3 - 24x^2 + 14$	4x	d. 4x ³ -	$24x^2 + 144x$	
Question26. In the f negative as x increa a .Local maxima C. Neither maxim	first derivative test, if ases through c_1 , then at $x = c_1$ ha nor minima at $x = 1$	dy/dx changes i function attains c1 c	ts sign from a: o .Local mini I. None of the	positive to ma at x = c₁ ese
Question 27. What corner of the board	at should be the side to behold the maxim	of the square pie num volume?	ece to be cut	from each
a)14 cm	b) 12 cm	c) 4 cm	(d) 5 cm
Question 28. What	should be the maxim	num volume of o	pen box?	
a)1034 cm³	b)1024 cm³	c) 1204 cm ³		d) 4021 cm³
Question 29. The s	smallest value of the	polynomial x ³ –	18x² + 96x ir	ı [0, 9] is:
a)126 b.0 c	.135 d. 160			
Question 30.The cu (a) a vertical tan (b) a horizontal t (c) an oblique ta (d) no tangent	Irve y – x ^{1/5} at (0, 0) h gent (parallel to y-ax angent (parallel to x- ngent	nas is) ·axis)		
Question 31.The ec	quation of normal to t	he curve 3x² – y	² = 8 which i	s parallel to the
line , x + 3 (a) 3x – y = 8	y = 8 is (b) 3x + y + 8 = 0	(c) x + 3	$3y \pm 8 = 0$	(d) x + 3y =
Question 32. If the	curve ay + x² = 7 and	d x³ = y, cut ortho	ogonally at (I, 1) then the
(a) 1	(b) 0	(c) -6		(d) 6
Question 33. The a	bsolute maximum v	value of v – v ³ -	-3x + 2 in () ≤ x ≤ 2 is
(a) 4	(b) 6	(c) 2		(d) 0
(a) 4 Question 34. The I (a) (-1, 2)	(b) 6 line y = x + 1 is a ta (b) (1, 2)	(c) 2 (c) 2 (c) (1, -2)	irve y2 = $4x$	(d) 0 at the point (d) (2, 1)
(a) 4 Question 34. The l (a) (-1, 2) Question 35. The fi (a) true	 (b) 6 line y = x + 1 is a ta (b) (1, 2) unction f(x) = 4x + 3 (b) false. 	(c) 2 (c) 2 (c) (1, -2) (c) (1, -2) (c) none of the	irve y2 = 4x ncreasing fu	(d) 0 at the point (d) (2, 1) nction.

Question 37. Find the maximum and minimum value of the function $y = x - 3 + \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$					
7, x e (a (c	a) (7 , 3) c) (no maximum va	lue ,7)	(b) (7 , no (d) none o	minimum value.) f these	
Questi	on 38 The function	n f (x) = x ² , for all r	eal x, is		
(8	a)Neither decreasi	ng nor increasing		(b) Increasing	
(0	c) Decreasing			(d) None of these	
Questi	on 39. The slope c	of the tangent to th	e curve x = a	a sint, y = a {cost+	
log(ta a)	nt/2)} at the point tan t/2 b) no	one of these	c)tan t	d) cot t	
Questi a)	Question 40 The function f (x) = $x^2 - 2x$ is strict decreasing in the interval a) none of these b) R c) [1, ∞) d) ($-\infty$, 1)				
Answe	er questions 41- 45 k	based on the following	ng case study	·:	
A relat	ion R on a set A is a	said to be an equiva	lence relation	on A if it is	
 Reflexive i.e , (a,a) belongs to R for all a belongs to A. Symmetric i.e (a,b) belongs to R it implies (b,a) belogs to R For all (a,b) belongs to A. Transitive i.e (a,b) belongs to R and (b,c) belongs to R it implies (a,c) belongs to R For a b c belongs to A 					
Based	on the above inform	nation answer the fol	lowing question	ons	
(i) If the relation R = { (1,1) , (1,2) , (1,3) , (2,2) , (2,3), (3,1), (3,2), (3,3)} defined on the set A = { 1,2,3} ,then R is					
	[a] reflexive	[b] symmetric	[c] transitive	[d] equivalence	
(ii)	If the relation R =	{ (1,2) (2,1) ((1,3), (3,1)} defined o	on the set A = { 1,2,3}	
	,then R is [a] reflexive	[b] symmetric	[c] transitive	[d] equivalence	
(iii) If the relation R on the set N of all natural numbers defined as $R = \{(x,y) : y=x+5 \text{ and } x<4\}$ then R is					
	[a] reflexive	[b] symmetric	[c] transitive	[d] equivalence	
(iv)	If the relation R on the	he set A = {1,2,3,13	3,14} defined as	s R={(x,y):3x –y =0 } then	
	R is				
	[a] reflexive	[b] symmetric	[c] transitive	[d] none of these	
 (v) If the relation R on the set A ={1,2,3} defined as R ={(1,1),(,2),(1,3),(2,1),(2,2),(2,3), (3,1), (3,2),(3,3)} then R is 					

Answer questions 46-50 based on the following case study:

A telephone company in a town has 500 subscribers on its list and collects fixed charges of 300 per subscriber per year. The company proposes to increases the annual subscription and it is believed that for every increase of 1 one subscriber will discontinue the service.

i. If x be the annual subscription then the total revenue of the company after increment will be:

a.	$R(x) = -x^2 + 200x + 150000$	$c.R(x) = x^2 - 200x - 140000$
----	-------------------------------	--------------------------------

b. $R(x) = 200x^2 + x + 150000$ $d.R(x) = -x^2 + 100x + 100000$

ii. To find maximum profit we put

a. R'(x) = 0 b.R'(x) > 0 c.R'(x) < 0 d.R''(x) = 0iii. How much fee the company should increase to have maximum profit?

a. Rs. 150 b.Rs. 100 c.Rs. 200 d.Rs. 250 iv. Find the maximum profit that the company can make if the profit function is given by $P(x) = 41 + 24x - 18x^2$.

a. 25 b.44 c.45 d.49 v. Find both the maximum and minimum value respectively of $3x^4 - 8x^3 + 48x + 1$ on the interval [1, 4].

a. -63, 257 b.258, -63 c.257, -63 d.-63, -257