MODERN VIDYA NIKETAN

SUBJECT: MATHEMATICS (CLASS: XII)

REVISION TEST

Time: 90 Min. Dated: 20.11.2021 Max. Marks: 40

General	Instructi	ions:

- 1. This Question Paper contains three sections A, B and C. Each part is compulsory.
- 2. Section A has 20 MCQ's. Attempt any 16 out of 20.
- 2. Section B has 20 MCQ's. Attempt any 16 out of 20.
- 2. Section C has 10 MCQ's. Attempt any 8 out of 10.
- 5. There is no negative marking.
- 6. All questions carry equal marks.

Section – A

1.	If area of Δ	with vertices $(\lambda,1),(1,-1)$	and $(2,1)$ is one squ	are unit. Then λ can take value	٠.
	(a) 1 only	(b) 3 only	(c) 1 or 3	(d) None of these	

- A and B are square matrices of order 2 such that 2A + 3B is null matrix such that |A| = 9, then |B| is
 - (a) 4 (b) -4 (c) -6 (d) 6
- 3. If $\theta \in \left(0, \frac{\pi}{2}\right)$; for what value of θ the matrix $\begin{bmatrix} 1 & 2\sin x \\ 2\sin x & 3 \end{bmatrix}$ is singular?
 - (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$
- 4. Let $A = [a_{ij}]$ be a square matrix of order 3×3 and |A| = -5, then the value of $a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31}$ is {where a_{ij} is the cofactor of element a_{ij} }
- (a) 5 (b) -5 (c) 0 (d) 25
- 5. Value of $\tan^{-1} \left(\frac{1}{\sqrt{3}} \right) \sec^{-1} \left(-2 \right)$ is
 - (a) $\frac{\pi}{2}$ (b) $\frac{-\pi}{2}$ (c) $\frac{5\pi}{6}$
- 6. Value of $\cos^{-1}\left(\cos\frac{9\pi}{8}\right)$ is
 - (a) $\frac{9\pi}{8}$ (b) $\frac{\pi}{8}$ (c) $\frac{-\pi}{8}$
- 7. Domain of $\sin^{-1}(3-2x)$ is
 - (a) [-1, 1] (b) (-1, 1) (c) [1, 2] (d) (1, 2)
- 8. If A and B are two sets such that n(A) = 3 and n(B) = k. If number of injective function from A to B is 120. Then the value of k is
 - (a) 4 (b) 5 (c) 6 (d) 7

9.	Let $f: R \to R$ be def (a) -342	fined as $f(x) = x^3 + 1$. T	Then pre-image of -7 is (c) -2	s: (d) None of these
10.	l_1Rl_2 iff $l_1 \perp l_2$, where l_1 and l_2 are straight lines in a plane. Then R is:			` '
	(a) symmetric	(b) reflexive	(c) transitive	(d) equivalence relation
11.	If $f(x) = x \sin\left(\frac{1}{x}\right)$,	if $x \neq 0$ and if $f(x)$ is o	continuous at $x = 0$ the	n f(0) is
	(a) 0	(b) 1	(c) 2	(d) Not defined
12.	Differential co-effic	ient of $\csc(\cot^{-1} x)$	is	
	(a) $\frac{x}{\sqrt{1+x^2}}$	(b) $\frac{x}{1+x^2}$	$(c) \frac{x}{2\sqrt{1+x^2}}$	(d) None of these
13.	If $x^y = y^x$; then $\frac{dy}{dx}$ is			
	(a) $\frac{y(x \log y + y)}{x(y \log x + x)}$	(b) $\frac{y(x \log y - y)}{x(y \log x - x)}$	(c) $\frac{y}{x}$	(d) $\frac{-y}{x}$
14.	If $f(x) = x^2 - x $ then $f'(\frac{1}{3})$ is			
	(a) 0	(b) $\left(\frac{1}{3}\right)$	(c) $-\frac{1}{3}$	(d) Does not exists
15.	If $y = a \sin \theta + b \cos \theta$; $x = b \sin \theta - a \cos \theta$ then $\frac{dy}{dx}$ is			
	(a) $\frac{x}{y}$	(b) $\frac{-x}{y}$	(c) $\frac{y}{x}$	(d) $\frac{-y}{x}$
16.	If $y = \log \left[\tan \left(\frac{\pi}{4} + \frac{3\pi}{4} \right) \right]$	$\left(\frac{x}{2}\right)$ then $\frac{dy}{dx}$ is		
	(a) sec x	(b) cosec x	(c) tan x	(d) cot x
17.	If $x^y = e^{x-y}$; then $\frac{dy}{dx}$ is			
	(a) $\frac{\log x}{1 + \log x}$	$(b) \frac{-\log x}{\left(1 + \log x\right)^2}$	$(c) \frac{\log x}{\left(1 + \log x\right)^2}$	(d) None
18.	angle of intersection between the curves $y = x^2 + x - 1$ and $y = \frac{1}{6}(7 - x^2)$ at $(1, 1)$ is			$(7-x^2)$ at $(1, 1)$ is
	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{2}$	(d) $\tan^{-1}\left(\frac{3}{4}\right)$
19.	$f(x) = e^x \sin x$ is decreasing in the interval			
	(a) $\left(0, \frac{3\pi}{4}\right)$	(b) $\left(\frac{3\pi}{4}, \frac{7\pi}{4}\right)$	(c) $(0,\pi)$	(d) $\left(\frac{3\pi}{2}, 2\pi\right)$

20.	Point on the curve $y = x^2 - x + 1$ where the tangent is parallel to line joining $(2, -1)$ and $(3, 2)$:			
	(a) $(2,3)$	(b) (3, 2)	(c) (-2, 7)	(d) None
		<u>Sec</u>	tion – B	
21.	If objective function $z = ax + y$ is minimum at $(4, 1)$ and minimum value is 13; then value of a			
	(a) 3		(b) 1	
	(c) 2		(d) incomplete infor	rmation's
22.	In an L.P.P; if the	objective function z =	x - y and the corner p	points of its feasible region are
	(6, 0), (0, 1), (6, 6)	and $(0, 15)$. then the m	inimum value f z occur	rs at
	(a) $(6, 0)$	(b)(0,1)	(c)(6,6)	(d) (0, 15)
23.				naximum value is 10 such that
		e of p and q are respec	-	(1) 27
	(a) 3, 1	(b) 1, 3	(c) 2, 3	(d) None of these
24.	Value of $\begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 5 \\ 6 \end{bmatrix} =$			
	(a) [-4]	(b) [4]	(c) [6]	(d) None of these
25.	$ \operatorname{If} \begin{bmatrix} x+y & 4 \\ -5 & 3y \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} $	$\begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}$ then value of x is	is	
	(a) 1	(b) 2	(c)-1	(d) 3
26.	A, B and C are squa	are matrices of order 3	\times 3 and if AB = 2C; A	A = 4, $ C = 3$ then $ B $ is
	(a) $\frac{3}{2}$	(b) 3	(c) 6	(d) None of these
27.	If $ABC = D$; then B	is equal to		
	(a) $DA^{-1}C^{-1}$	(b) $A^{-1}DC^{-1}$	(c) $C^{-1}DA^{-1}$	(d) None of these
28.	If system of equations $2x - y = 4$ and $\lambda x + 3y = 1$ has unique solution, then λ cannot be equal to			
	(a) 6	(b) 3	(c) -6	(d) 0
29.	For what value of x	; the matrix $\begin{bmatrix} x-1 & 1 \\ 1 & x \end{bmatrix}$	7 +5] is singular	
	(a) 2 only	(b) –6 only	(c) 2 or –6	(d) No value of x
30.	If $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ then	A^{2021} is		
	(a) $ \begin{bmatrix} 2021 & 2021 \\ 0 & 2021 \end{bmatrix} $		(b) $\begin{bmatrix} 2021 & 1 \\ 0 & 2021 \end{bmatrix}$	
	(c) $ \begin{bmatrix} 1 & 2021 \\ 0 & 1 \end{bmatrix} $		(d) None	

31.	If $f(x) = \begin{bmatrix} \cos x & -\sin x \end{bmatrix}$	$-\sin x$ $\cos x$ then $f(x)$. $f(y)$ is	3		
	(a) f(xy)	(b) $f(x + y)$	(c) f(x) + f(y)	(d) $\frac{f(x)}{f(y)}$	
32.	If $y = \tan^{-1} \left(\frac{2\sqrt{x}}{1-x} \right)$	then $\frac{dy}{dx}$ is			
	(a) $\frac{2}{1+x}$		(b) $\frac{2}{\sqrt{x}(1+x)}$		
	(c) $\frac{1}{\sqrt{x}(1+x)}$		(d) None of these		
33.	Simplified value of	$\int_{0}^{\infty} \cot^{-1} \sqrt{\frac{1+\cos x}{1-\cos x}} \text{ where}$	$e x \in (\pi, 2\pi)$		
	(a) $\frac{x}{2}$	(b) $\frac{-x}{2}$	(c) $\frac{\pi}{2} - \frac{x}{2}$	(d) $\pi - \frac{x}{2}$	
34.	Principal value of	$\cos^{-1}\left[\sin\left(\frac{127\pi}{4}\right)\right] is$			
	(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{2}$	(c) $\frac{3\pi}{4}$	(d) $\frac{-\pi}{4}$	
35.	A relation R in the	set of natural number i	n given by $R = \{(a, b)\}$	$: a \le b^2 $ is	
	(a) reflexive		(b) symmetric		
	(c) transitive		(d) none		
36.	If $A = \{1, 2\}$ and B	$= \{a, b, c\}$. Then number	er of onto functions fro	om A to B is	
	(a) 3	(b) 0	(c) 9	(d) 8	
37.	Number of point on the curve $y = x^3 - 11x + 5$ at what the tangent is $y = x - 11$ is/are:			t is $y = x - 11$ is/are:	
	(a) Infinite		(b) Only one point		
	(c) Exactly two poi	nt	(d) No point		
38.	If $x - y + 1 = 0$ is ta	angent to the curve $y =$	$x^2 - x + a$ then value of	of a is:	
	(a) 1	(b) 2	(c)-1	(d) -2	
39.	If $f(x) = \frac{x^2}{2} + ax +$	-1 is increasing in the ir	nterval [2, 4] then the le	east value of a is	
	(a) 2	(b) -2	(c) 4	(d) -4	
40.	Solution of x of no	rmal to the curve define	ed parametrically as y	= $\sec \theta$; $x = \tan \theta$ at $\theta = \frac{\pi}{4}$ is	
	(a) 1	(b) -1	(c) $\frac{1}{\sqrt{2}}$	(d) $-\sqrt{2}$	
				Dage	

Section - C

- The point which does not lie in the half-plane $2x + 3y 12 \le 0$ is 41.
 - (a)(1,2)
- (b)(2,1)
- (c)(2,3)
- (d)(-3,2)
- 42. The common region determined by all the linear constraints of a LPP is called region
- (b) Triangular
- (c) Quadrilateral
- (d) None

- Value of $\begin{vmatrix} \sin\frac{\pi}{18} & \sin\frac{4\pi}{9} \\ -\cos\frac{\pi}{18} & \cos\frac{4\pi}{9} \end{vmatrix}$ is: 43.
 - (a) 0
- (b) 1

- (c) $\sin \frac{7\pi}{8}$ (d) $\cos \frac{7\pi}{18}$
- 44. If A and B are square matrices such that ABA' is skew–symmetric then:
 - (a) B is symmetric

(b) B is skew–symmetric

(c) B can be any matrix

(d) B is null matrix

Case Study

A wire 50 meter long is out into two pieces. One of pieces is to be made into a circle and other into a square.

Length of the piece which is made into a circle is x metres.

The radius of the circle is 'r' metre and side of square is 'a' metre.

Based on the information given above, answer the following questions:

- Absolute maximum value of $f(x) = x^2 2x + 4$ in [-3, 2]45.
 - (a) 19
- (b) 4
- (c)3
- (d) None

- 46. Relation between r and x is:
 - (a) $\pi r = x$

(b) $\pi r^2 = x$

(c) $2\pi r = x$

- (d) None of these
- 47. Value of side of square 'a' in terms of x is:
 - (a) a = 50 x

(b) $a = \frac{50 - x}{4}$

(c) $a = \frac{50 - x}{2}$

(d) None of these

48. Sum of areas of circle and square S(x) expressed as a function of x is:

(a)
$$S(x) = \frac{x^2}{4\pi} + \frac{(50-x)^2}{16}$$

(b)
$$S(x) = \frac{x^2}{4\pi} + \frac{(50-x)^2}{4}$$

(c)
$$S(x) = \frac{x^2}{4\pi} - \frac{(50-x)^2}{4}$$

(d) None of these

49. Value of x for which S(x) is maximum, is: $\left(\text{Use } \pi = \frac{22}{7}\right)$

(a)
$$x = 11$$

(b)
$$x = 22$$

(c)
$$x = 25$$

(d)
$$x = 20$$

50. Length of the piece which is made into a square is:

- (a) 39 m
- (b) 32 m
- (c) 28 m
- (d) None of these