

STD: XII

Maximum marks: 80

20/9/2021 8:05 - 20/9/2021 10:35

ASSESSMENT: Semester 1 optional

56 Marks

Time Limit: 150 Minutes

General Instructions:

This question paper contains two Parts A and B. Each part is compulsory. Part A carries 56 marks and Part B carries 24 marks.

- 2. Part A has Objective Type Questions and Part B has Descriptive Type Questions. Part A:
- 1. It consists of two sections I and II.
- 2. Section I comprises of 20 objective type questions.
- 3. Section II contains 2 case studies. Each case study comprises of 4 case-based MCQs. Part B:
- 1. It consists of two sections III, and IV.
- 2. Section III comprises of 3 questions of 3 marks each.
- 3. Section IV comprises of 3 questions of 5 marks each.
- 4. Internal choice is provided in 1 question of Sections III, and IV. You have to attempt only one of the alternatives.

Part A

Questions in this section carry 2 marks ea	ach. 40 Marks
1 For real numbers a and b , define aR number. Then the relation R is	b if and only if $a-b+\sqrt{2}$ is an irrational 2 M
reflexive only	B reflexive and symmetric, but not transitive
© equivalence relation	D none of these
2 Let $A = \{1, 2, 3\}$. Then the number are reflexive and transitive but not syn \bigcirc 1 \bigcirc 8 2 \bigcirc 3 \bigcirc 4	of relations containing (1,2) and (2,3) which 2 M nmetric is
3 Let $f:[1,\infty) o R$, given by $f(x)$ $ig(A)$ $[-5,\infty)$ $ig(B)$ $[-4,\infty)$ $($	

Let R be the set of real numbers. Consider the following functions defined on R. $f:R
ightarrow \left\{x \in \ R: -1 < x < 1
ight\}$ defined by $f\left(x
ight) = rac{x}{1+|x|}, x \in R$ $g:R-\left\{ -rac{4}{3}
ight\}
ightarrow R$ defined by $g\left(x
ight) =rac{4x}{3x+4}$

2 M

Which of the following is true?

 $\widehat{\mathsf{A}}$ f is one-one and onto , g is oneone but not onto

(B) Both f and g are one-one and onto

 \bigcirc f is one-one but not onto , g is one-one but not onto

(D) none of these

The value of the expression $\tan \left(\frac{1}{2}cos^{-1}\left(\frac{2}{\sqrt{5}}\right)\right)$ is

2 M

 $(\widehat{\mathsf{A}})$ $\sqrt{5}-2$ $(\widehat{\mathsf{B}})$ $-\sqrt{5}-2$ $(\widehat{\mathsf{C}})$ $-2\pm\sqrt{5}$ $(\widehat{\mathsf{D}})$ none of these

If $cos^{-1}x > sin^{-1}x$, then

 \bigcirc $\frac{1}{\sqrt{2}} < x \le 1$

© $-1 \le x < \frac{1}{\sqrt{2}}$

- \bigcirc x > 0
- If A and B are square matrices of same order, then AB^T-BA^T is a

2 M

null matrix

(B) unit matrix

(C) symmetric matrix

- D) skew-symmetric matrix
- If A is a square matrix of order 3 such that $A\left(adj\ A\right)=egin{bmatrix} -3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -3 \end{bmatrix}$, 8

2 M

 $B=egin{bmatrix} 1&0&0\ 7&-1&0\ 5&2&-2 \end{bmatrix}$ then the value of |-2AB| is

(B) -1296

(C) 48

 \bigcirc -324

If
$$A=\begin{bmatrix}1&2\\2&3\end{bmatrix}$$
 where $A^2-xA=I_2$ and y,z are the values for which the matrices $\begin{bmatrix}3y+7&5\\z+1&2-3y\end{bmatrix}$, $\begin{bmatrix}0&z-2\\8&4\end{bmatrix}$ are equal, then find $x+y+z$

2 M

(C) 3

Not possible to find

10 Find the values of a, b, c for which the function

2 M

$$f(x) = \begin{cases} \frac{\sin (a+1)x + \sin x}{x}, & \text{for } x < 0 \\ c, & \text{for } x = 0 \text{ is continuous at } x = 0 \\ \frac{(x+bx^2)^{1/2} - x^{1/2}}{bx^{3/2}}, & \text{for } x > 0 \end{cases}$$

11 If $x=t^2$ and $y=t^3$, then $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$ is equal to

2 M

(A) 3t

 \bigcirc $\frac{3}{4t}$

12 If $y=sin^{-1}\left(rac{\sqrt{1+x}-\sqrt{1-x}}{2}
ight)$ then $rac{dy}{dx}=$

2 M

 $A \frac{1}{2(1+x^2)}$

13 The equation of tangent to the curve $y\left(1+x^2
ight)=2-x$, where it crosses the

14 If the curves $ay+x^2=7$ and $y=x^3$ co	ut ortho	ogonally at $(1,1)$, then the value of	2 M
	(B)	-1	
a is	(6)		
A 0			•
	(D)	-6	
© 6	⊾ 19¢	$\sin x + 100$ is strictly	2 N
(C) 6 15 The function $f(x) = 4sin^3x - 6sin^2x$	+ 123	$\pi \pi x + 100$ is strictly	
(A) increasing in $(\pi, \frac{3\pi}{2})$	100		
C decreasing in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	(D)	decreasing in $\left(0, \frac{\pi}{2}\right)$	
	9.4		2 N
16 $f(x) = (x+1)^3 (x-3)^3$	(B)	strictly decreasing in the interval	
A strictly increasing in the interval		$(1,\infty)$	
$(1,\infty)$	(D)	none of these	
\bigcirc strictly increasing in the interval $(-\infty,1)$			
	. 2	9 1 17 in	2 1
17 When $oldsymbol{x}$ is real, then the minimum value o			
(A) −1	(B)	0	
© 1	(D)	· 2	
18 The maximum value of $\left(\frac{1}{x}\right)^x$ is			2
(A) e	(B)	e^e	
$\stackrel{\smile}{\mathbb{C}}$ $e^{1/e}$	(D)	$\left(\frac{1}{e}\right)^{1/e}$	
			2 N
19 Corner points of the feasible region for an $(0,2)$, $(3,0)$, $(6,0)$, $(6,8)$ and $(0,5)$ function. The minimum value of F occurs) . Let .		2 11
\bigcirc (0,2) only	B	(3,0) only	
	0	any point on the line segment	
the mid point of the line segment joining the points $(0,2)$ and $(3,0)$ only	(0)	joining the points $(0,2)$ and $(3,0)$	
, 15/2001			

The comer points of the feasible region determined by the system of linear constraints are (0,0) , (0,40) , (20,40) , (60,20) , (60,0) . The objective function is Z=4x+3y. Compare the quantity in Column A and Column B.

Column A	Column B
Maximum of Z	

- A) The quantity in column A is greater
- (B) The quantity in column B is greater
- C) The two quantities are equal
- The relationship cannot be determined on the basis of the information supplied.

Section II

16 Marks

Questions in this section carry 2 marks each.

Both the Case study based questions are compulsory. Attempt all 4 sub-parts of each question

- 21 A diet is to contain 30 units of vitamin A, 40 units of vitamin B and 20 units of vitamin C. Three types of foods F_1, F_2 and F_3 are available. One unit of Food F_1 contains 3 units of vitamin A, 2 units of vitamin B and 1 unit of vitamin C. One unit of food F_2 contains 1 unit of vitamin A, 2 units of vitamin B and 1 unit of vitamin C. One unit of food F_3 contains 5 units of vitamin A, 3 units of vitamin B and 2 units of vitamin C. Based on the above information, answer the following questions:
 - If the diet contains x units of Food $F_1\,,\,\,y$ units of food $F_2\,$ and z units of food $F_3\,$. 2 M What is the matrix equation representing the above situation

$$\begin{bmatrix}
3 & 2 & 1 \\
1 & 2 & 1 \\
5 & 3 & 2
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix} = \begin{bmatrix}
30 \\
40 \\
20
\end{bmatrix}$$

$$\begin{bmatrix} 3 & 2 & 1 \\ 1 & 2 & 1 \\ 5 & 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 30 \\ 40 \\ 20 \end{bmatrix} \qquad \begin{array}{c} \textcircled{B} & \begin{bmatrix} 3 & 1 & 5 \\ 2 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 30 \\ 40 \\ 20 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 2 \\
2 & 2 & 3 \\
3 & 1 & 5
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix} = \begin{bmatrix}
30 \\
40 \\
20
\end{bmatrix}$$

$$\begin{bmatrix}
2 & 2 & 3 \\
1 & 1 & 2 \\
3 & 1 & 5
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix} = \begin{bmatrix}
30 \\
40 \\
20
\end{bmatrix}$$

- If A is the coefficient matrix in the above situation, then what is the value of adj A ?
- 2 M

2 M

B 4 C 8 D 16

What is the value of $|A^{-1}|$?

- \bigcirc B $\frac{1}{8}$

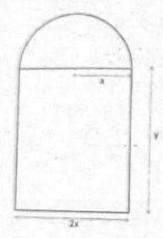
d What is A.(adj A)?

 $\begin{array}{c|cccc}
A & \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} \\
\hline
C & \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \\
\end{array}$

22 Mr. Sharma is an architect.

He designed a building and provided an entry door in the shape of a rectangle surmounted by a semicircular opening.

The perimeter of the door is 10m.



Based on the above information, answer the following questions:

a If 2x metres and y metres be the breadth and the height of the rectangular part of 2 M the door, then the relation between x and y is

(A)
$$y = 5 - \frac{1}{2} (\pi + 2) x$$

(B)
$$y = 10 - \frac{1}{2}(\pi + 2)x$$

b To allow maximum airflow inside the building, the width of the door is

2 M

$$\bigcirc$$
 $\frac{10}{4+\pi}m$

$$\bigcirc$$
 $\frac{20}{2+\pi}m$

$$\bigcirc$$
 $\frac{40}{2+\pi}n$

c To allow maximum airflow inside the building, the height of the door is

2 M

(A)
$$\frac{5}{4+\pi}m$$
 (B) $\frac{10}{4+\pi}m$ (C) $\frac{20}{4+\pi}m$ (D) $\frac{30}{4+\pi}m$

$$\bigcirc$$
 $\frac{10}{4+\pi}m$

(C)
$$\frac{20}{4+\pi}n$$

$$\bigcirc$$
 $\frac{30}{4+\pi}m$

d The area of the door which permits the maximum airflow inside the building is

2 M

(A)
$$\frac{100}{4+\pi}m^2$$

(B)
$$\frac{200}{4+\pi}m^2$$

$$\bigcirc$$
 $\frac{80}{4+\pi}m$

(A)
$$\frac{100}{4+\pi}m^2$$
 (B) $\frac{200}{4+\pi}m^2$ (C) $\frac{80}{4+\pi}m^2$ (D) $\frac{50}{4+\pi}m^2$

Part B

24 Marks 9 Marks

Section III

Questions in this section carry 3 marks each.

23 If R and S are two equivalence relations in a set A. Check whether

3 M

- (i) $R\cap S$ is transitive(1 $\frac{1}{2}$ marks)
- (ii) $R \cup S$ is transitive......($1\frac{1}{2}$ marks)

OR

Show that the relation R defined on the set A of all triangles in a plane $R=\{(T_1,T_2):T_1\ is\ similar\ to\ T_2\}$ is an equivalence relation(3 marks)

- If $A=\begin{bmatrix}2&0&1\\2&1&3\\1&-1&0\end{bmatrix}$, find $A^2-5A+4I$ and hence find a matrix X such that $A^2-5A+4I+X=0$
- 25 Solve the linear programming problem graphically:

3 M

Minimise Z=200x+500y

Subject to the constraints:

$$x + 2y \ge 10$$

$$3x + 4y < 24$$

$$x \ge 0, y \ge 0$$

Section IV

15 Marks

Questions in this section carry 5 marks each.

Determine the product $\begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$ and use this product to

solve the system of equations

$$x-y+z=4, x-2y-2z=9$$
 and $2x+y+3z=1$.

OR

If $A=\begin{bmatrix}2&3&1\\1&2&2\\-3&1&-1\end{bmatrix}$, find out A^{-1} and hence, solve the system of equations 2x+y-3z=13, 3x+2y+z=4 and x+2y-z=8.

- If $(x-a)^2+(y-b)^2=c^2$, for some c>0, prove that $\frac{\left[1+\left(\frac{dy}{dx}\right)^2\right]^{3/2}}{\frac{d^2y}{dx^2}}$ is a constant independent of a and b
- 28 (i) Prove that $y=\frac{4\sin\theta}{(2+\cos\theta)}-\theta$ is an increasing function of θ in $\left[0,\frac{\pi}{2}\right]$ 5 M (ii) For what value of m is the line y=mx+1 is a tangent to the curve $y^2=4x$?